ahn®

The AHN Advantage in Reagent Bottle Integrity

A Detailed Comparative Study Against Market Competitors

Executive Summary

Reagent bottles play a pivotal role in laboratory workflows, where purity, sterility, and contamination control directly impact experimental precision and product quality.

This white paper presents a comparative evaluation of AHN 8 mL Reagent Bottles against a leading market alternative, Brand T1 8 mL Reagent Bottles, based on four standardised quality parameters: Liquid Particulate Count, Presence of Oxidizable Substances, UV Absorbance for Extractables, and Bioburden Analysis.

Independent third-party testing confirms that AHN bottles deliver superior performance in particulate control and microbial cleanliness, while performing at par with Brand T1 in chemical stability and extractables. The findings reaffirm AHN as a reliable, high-purity choice for laboratories that demand consistency and uncompromised quality.

Introduction

In modern pharmaceutical, biotechnology, and research laboratories, reagent bottles are expected to meet stringent global standards to safeguard against contamination and ensure reproducibility. The right container ensures low particulate levels, chemical inertness, absence of reactive impurities, & minimal microbial presence.

AHN is a recognized leader in precision laboratory consumables, initiated a third-party evaluation of its 8 mL reagent bottles (LOT: 008NHBM03) against Brand T1 8 mL reagent bottles (LOTs: VFHO323, VFHO332, JHFO123) to validate comparative performance across key quality indicators.

Test 1: Liquid Particulate Count

Methodology

The Liquid Particulate Count Test measures non-viable particulate contamination—crucial for sterile and high-precision applications. Bottles were rinsed with Water for Injection (WFI) and analyzed using a HIAC Royco Liquid Particle Counter 9703, as per USP <788> Method 1. Particle counts were recorded for sizes \geq 10 µm and \geq 25 µm, with an acceptance limit of NMT 5/mL for \geq 25 µm.

Results:

Parameter	AHN	AHN	T1	T1	Acceptance
	(≥10 μm /ml)	(≥25 μm /ml)	(≥10 μm /ml)	(≥25 μm /ml)	Limit (≥25 μm)
Measured Count	4.33	0.13	5.33	0.33	NMT 5/ml

Both products complied with acceptance limits; however, AHN demonstrated 19% lower count at ≥10 µm and 61% lower count at ≥25 µm versus Brand T1.

Implications

Lower particulate burden in AHN bottles minimizes the risk of flow interference or occlusion in microfluidic and analytical systems, ensuring greater cleanliness and reliability for sensitive laboratory workflows.

Test 2: Presence of Oxidizable Substances Methodology

This assessment detects organic impurities that may oxidize and compromise reagent stability. Samples were rinsed with 2 N sulfuric acid, boiled with 0.02 M potassium permanganate for 5 minutes, and visually examined for color change.

Results:

- AHN: Pink color persisted post-boiling.
- Brand T1: Pink color persisted post-boiling.

Both samples passed unequivocally, indicating the absence of detectable oxidizable substances.

Implications

Equivalent chemical stability confirms both bottles are suitable for oxygen-sensitive reagents such as enzymes and antioxidants. The results also reflect the high purity and inert polymer composition of AHN bottles.

Test 3: UV Absorbance (Extractables/Leachables) Methodology

To evaluate extractable compounds, 8 mL of WFI and 50% ethanol were incubated in bottles at 55 °C for 72 hours. Extracts were analyzed between 200–400 nm using a Multiskan SkyHigh spectrophotometer.

Acceptance: No significant deviation from blank readings.

Results:

Sample	Max Absorbance (230 nm)	Change vs. Blank (200–400 nm)
Blank	0.05	N/A
AHN	0.06	0.01(negligible)
T1	0.06	0.01(negligible)

Maximum absorbance at 230 nm remained consistent across all samples, with no detectable peaks or spectral shifts after incubation.

Implications

Both products exhibit excellent chemical inertness, confirming their suitability for storing aqueous and organic solvents without risk of extractable contamination. This ensures accuracy in analytical and chromatographic applications.

Test 4: Bioburden Analysis

Methodology

Bioburden testing quantifies viable microorganisms, a key metric for sterile-use readiness. Bottles were rinsed with sterile peptone buffer (pH 7), filtered through 0.45 μ m CN membranes, and incubated on Soybean Casein Digest Agar (bacteria) and Sabouraud Glucose Agar (fungi) at 30–35 °C for 5 days.

Acceptance: < 10 CFU/unit.

Results:

Control plates: No growth.

AHN: All samples (10 pcs) showed 0 CFU/unit.

Brand T1: Occasional 1–2 colonies/plate (< 5 CFU/unit total).

Both complied with acceptance limits, but AHN displayed zero bioburden, reflecting cleaner manufacturing and handling environments.

Implications

The absence of microbial growth highlights AHN's stringent production hygiene and its advantage in PCR, cell culture, and aseptic processing—where even trace contamination can compromise results.

Conclusion

The comparative assessment underscores that AHN 8 mL Reagent Bottles deliver outstanding particulate and microbial control while matching Brand T1 in terms of chemical stability and extractable profile. Aligned with international pharmacopeial standards (USP, EP), AHN bottles present a premium yet cost-effective solution for laboratories seeking uncompromised purity, reliability, and reproducibility.

Choosing AHN means choosing assurance — cleaner, safer, and more consistent performance for every experiment.

References

- USP <788> Particulate Matter in Injections
- USP <857> UV–Visible Spectroscopy
- USP <62> Microbiological Examination of Non-Sterile Products: Tests for Specified Microorganisms

